\qquad
\qquad

——菲㳦Young Chef Ritchen Inventory

Directions: Look for three-dimensional shapes in your kitchen. Complete the tally chart to collect your data. Then, create a bar graph to display your findings.

Bar Graph

Three-Dimesional Shapes							Tally Marks
Cone							
Cylinder							
Rectangular							
Prism							
Sphere							

What three-dimensional shape did you see the most?

What three-dimensional shape did you see the least?
\qquad
\qquad

Cone			

罳(C) Calculating with Coins

Coin Chart

Sort and count coins using the coin chart. You can use real coins or homemade coins.

Materials:

- Printer
- Copy paper
- Coins (real or homemade)

Directions:

1. Create different combinations of coins.
2. Sort the coins into their correct column on the chart.
3. Starting with the largest value coin, skip count to find the total.

Coins Scale

Use the coin scale to compare two sets of money.

Mäerials:

- Printer
- Copy paper
- Coins (real or homemade)
- Scissors
- Single hole punch
- Brass fastener

Directions:

1. Cut out the top and bottom portions of the coin scale by following the dashed lines.
2. Punch a hole in the center of the top part of the scale. Punch a second hole in the middle of the two dishes of the scale.

3. Line up the holes and attach the two parts with the brass fastener.
4. Once your scale is assembled, collect two different combinations of coins.
5. Place the combinations on opposite sides of the scale.
6. Decide which combination of coins represents the larger amount and which represents the smaller amount of money.
7. Tip the scale to show your answer.

Remember, the combination of coins that's worth the larger amount will be heavier than the one representing the smaller amount.
\qquad Date: \qquad

(I) Coins Scale

Cut along the dotted line.

Do not cut on the solid line.
\qquad
\qquad

Number Puzzles

Directions:

1. Color the pictures on the puzzle pieces.
2. Carefully cut out the individual puzzle pieces.
3. Mix up the puzzle pieces.
4. Assemble each puzzle by matching up the pieces showing different representations of the same number.

5.

Page 2

\qquad
\qquad

Number Puzzles

Directions:

1. Color the pictures on the puzzle pieces.
2. Carefully cut out the individual puzzle pieces.
3. Mix up the puzzle pieces.
4. Assemble each puzzle by matching up the pieces showing different representations of the same number.
5.

2.

3.

\qquad
\qquad

Edible Equivalent Fractions

Find equivalent fractions using a chocolate candy bar that you can enjoy eating afterwards.

Materials:

- Printer
- Copy paper
- Pencil
- Chocolate candy bar that can be divided into 12 equally sized pieces

Directions:

1. Divide a chocolate candy bar into 12 equally sized pieces.
2. Place the pieces on the rectangles of the model, according to the given fractions.
3. Use the model to determine the equivalent fractions.
4. Fill in the answers.

Page 1

Name: \qquad Date: \qquad

Edible Equivalent Fractions

Answer Key

Sweet Operations

\qquad

Addition

Directions:

Color in the squares of the chocolate candy bar model according to the given fractions. Use the model to help you find the sums. Be sure to find the equivalent fractions for your answers.

2. $\frac{1}{3}+\frac{2}{12}=\frac{\square}{\square}=\frac{\square}{\square}$

3. $\frac{1}{4}+\frac{1}{2}=\frac{\square}{\square}=\frac{\square}{\square}$

4. $\frac{2}{4}+\frac{1}{3}=\frac{\square}{\square}=\frac{\square}{\square}$

Subłraction

Directions:

Color in the squares of the chocolate candy bar model according to the given fractions. Use the model to help you find the differences. Be sure to find the equivalent fractions for your answers.

1. $\frac{\mathbf{9}}{\mathbf{1 2}}-\frac{\mathbf{6}}{\mathbf{1 2}}=\frac{\square}{\square}=\frac{\square}{\square}$

2. $\frac{2}{3}-\frac{1}{3}=\frac{\square}{\square}$

3. $\frac{\mathbf{4}}{\mathbf{4}}-\frac{\mathbf{2}}{\mathbf{4}}=\frac{\square}{\square}=\frac{\square}{\square}$

4. $\frac{5}{6}-\frac{2}{6}=\frac{\square}{\square}=\frac{\square}{\square}$

Sweet Operations

Answer Key Addition

1. $\frac{9}{12}+\frac{1}{12}=\frac{10}{12}=\frac{5}{6}$

Answer Key Subtraction

1. $\frac{9}{12}-\frac{6}{12}=\frac{3}{12}=\frac{1}{4}$

	-		
		-	

2. $\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$

3. $\frac{4}{4}-\frac{2}{4}=\frac{2}{4}=\frac{1}{2}$

4. $\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$
\qquad
\qquad

Orange You Glad It's Fraction Time?

Materials:

- Printer
- Copy paper
- Crayons or colored pencils
- Scissors
- Pencil
- Single hole punch
- Brass fastener

Directions:

1. Color in the number of slices to match the given fraction on each orange.
2. Cut out the oranges.
3. Arrange the pages in order from the largest fraction to the smallest fraction.
4. Punch a hole through the top of each page and fasten with the brass fastener.
5. Enjoy reviewing fractions!

